SAULT COLLEGE OF APPLIED ARTS \& TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE
Course Title PHYSICS
Code No.: PHY 113-3
Program: ELECTRICAL/ELECTRONIC TECHNICIAN
Semester: II
Date: DECEMBER, 1983
Author: G. DISANO
New
Revision
APPROVED
(17•n
$x y u>\wedge \wedge \wedge$ ^^^ ChaTrperson
Date

PHILOSOPHY/GOALS:

METHOD OF ASSESSMENT (GRADING METHOD)

| TOPIC | PERIODS
 NUMBER | LECTURE-LAB |
| :--- | :--- | :--- |\quad TOPIC DESCRIPTION \quad REFERENCE

Upon successful completion of the course, the student will be able to:
INTRODUCTION
Review of Trigonometry

- with reference to a given angle in a right-angled triangle specify the "hypotenuse", the "opposite side" and the "adjacent side".
- in terms of the hypotenuse, the opposite side and the adjacent side define the six trigonometric functions: sine, cosine, tangent, cotangent, secant and cosecant.
- write a verbal statement and a mathematical statement of the "Pythagorean theorem".
- write a verbal statement and a mathematical statement of the cosine law.
- write a verbal statement and a mathematical statement of the sine law.
- calculate sine and cosine values for angles lying between 90 degrees and 180 degrees.
- solve problems in basic trigonometry at a level sufficient to enable him/her to deal with the mathematics of mechanics.

FORCES

1) Vector and Scaler Quantities

- define and list examples of "scaler quantities".
- define and list examples of "vector quantities".

2) Characteristics and Units of Forces

- define "force" incorporating into the definition the essential ideas of Newton's first law of motion.
- list 9 categories of forces,
- state the two characteristics of force - magnitude and direction.
- solve problems using the standard American engineering units of force - the pound, the kip and the ton.

3) Resultant of Parallel Forces \&

4) Addition of Vectors \&
5) Components of a Force

- define "resultant force".
- determine the resultant of two coplanar forces by means of the "parallelogram method" using a graphical approach,
- determine the resultant of two coplanar forces by means of the "parallelogram method" using a mathematical approach.
- determine the resultant of two or more coplanar forces by means of the "polygon method" using a graphical approach.
- determine the resultant of two or more coplanar forces by means of the "component method" using a mathematical approach.

6) Subtraction of Vectors

- determine the difference between two forces by means of "vector subtraction".

7) Moment of a Force

- state a definition of "moment of a force" or "torque".
- write an equation for the moment of a force about a point.
- calculate the moment produced by a force about a point.

8) Principle of Moments

- write a statement of the "principle of moments",
- solve problems involving forces acting upon systems in rotational equilibrium.

9) Couples

- state a definition of a "couple".
- solve problems involving couples.

CENTRE OF GRAVITY

1) Determination of Centroid

- state a definition of Centre of Gravity

2) Determination of Centre of Gravity

- state a definition of "centre of gravity".
- describe an experiment by which the centre of gravity of any two dimensional figure may be determined.

3) Centre of Gravity of Simple and Composite Solids

- determine the centre of gravity of particles grouped along a straight line.
- determine the centre of gravity of particles grouped in a plane.
- determine the centre of gravity of particles grouped in space.
- determine the centre of gravity of simple and composite two dimensional figures.
- determine the centre of gravity of simple and composite three dimensional solids.

FRICTION

1) Force of Friction

- state a definition of "friction".

2) Coefficient of Friction

- write an equation for the "coefficient of static friction".
- write an equation for the "coefficient of kinetic friction".

3) Laws of Friction

- state the three "laws of friction".
- solve problems involving static and kinetic friction.

MACHINES

- state a definition of a "simple machine".

1) Mechanical Advantage

- state a definition of "mechanical advantage".
- write an equation for mechanical advantage.

2) Velocity Ratio

- state a definition of "velocity ratio".
- write an equation for velocity ratio.

3) Efficiency

- state a definition of "efficiency".
- write two equations for efficiency.

4) Types of Machines

- draw diagrams of
- describe the operation of \&
- write equations for the mechanical advantage, the velocity ratio and the efficiency of
i) the "Lever".
- the first class lever
- the second class lever
- the third class lever
ii) the "Wheel and Axle",
iii) the "Inclined Plane",
iv) the "Screw".
v) the "Pulley".
- a single fixed pulley
- a single moveable pulley
- pulley systems
- draw diagrams of
- describe the operation of \&
- write the basic equations for the angular velocity of

1) two gears in mesh.
ii) two pulleys connected by a belt.
iii) gear and pulley trains.

- solve problems involving the mechanical advantage, the velocity ratio and the efficiency of both simple machines as well as composite machines composed of simple machines-

MOTION

1) Distance and Displacement
```
- state a definition of "distance".
```

- state a definition of "displacement".
- explain the major difference between distance and displacement.

2) Speed and Velocity

- state a definition of "speed".
- state a definition of "velocity".
- explain the major difference between speed and velocity.

3) Acceleration

- state a definition of "acceleration".
- state the 3 instances in which an acceleration is said to occur.
- state a definition of "uniform acceleration".
- state the units of acceleration.

4) Uniformly Accelerated Motion

- write the 4 equations involving uniformly accelerated motion that interrelate original velocity, final velocity, acceleration, displacement and time.
- solve a wide variety of problems involving displacements, constant velocities and uniformly accelerated motion,

5) Falling Bodies

- state the value of the acceleration due to gravity "g" in F.P.S. units, M.K.S. units and C.G.S. units.
- solve problems involving bodies falling under the influence of gravity.

6) Rotational Motion

- state the equation used to calculate the "normal acceleration" of a body travelling at constant speed " v " in a curved path of radius " r '
- solve problems involving rotational motion.

HEAT AND GASES

1) Four Temperature Scales

- Fahrenheit
- Celsius
- Kelvin
- Rankin

2) Absolute Temperature

- state the fundamental concepts of the "kinetic theory of heat".
- explain the difference between the heat possessed by a body and the temperature of the body,
- explain what is meant by the concept of "absolute zero".
- state the 4 temperatures scales in common use today.
- state on each of the 4 temperature scales the temperature at which water boils at atmospheric pressure, the temperature at which water freezes and absolute zero.
- write the equations used to convert:

1 degrees Celsius to degrees Fahrenheit,
ii degrees Fahrenheit to degrees Celsius,
iii degrees Fahrenheit to degrees Rankin,
iv degrees Rankin to degrees Fahrenheit,
v degrees Celsius to degrees Kelvin-
vi degrees Kelvin to degrees Celsius,
vii degrees Rankin to degrees Kelvin,
viii degrees Kelvin to degrees Rankin.

- convert temperatures in any one of the scales to corresponding temperatures in any of the other 3 scales.

3) Absolute and Gauge Pressure

- write the relationship between "absolute pressure", "gauge pressure" and atmospheric pressure.

4) Normal Temperature and Pressure

- explain what is meant by and give values for "normal temperature and pressure".

5) Boyle's Law

- explain what is meant by an "Isothermal change".
- write a verbal statement of "Boyle's Law".
- write a mathematical statement of "Boyle's Law".
- solve problems involving Boyle's Law.

6) Charles' Law

- explain what is meant by an "Isobaric change".
- write a verbal statement of "Charles' Law".
- write a mathematical statement of "Charles' Law".
- solve problems involving Charles' Law.

7) The General Gas Law

- write a mathematical statement of the General Gas Law.
- solve problems involving the General Gas Law.

