SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

- Course Title PHYSICS
- Code No.: PHY 113-3
- Program: ELECTRICAL/ELECTRONIC TECHNICIAN
- Semester: II
- Date: DECEMBER, 1983
- Author: G. DISANO

New

Revision

APPROVED

ChaTrperson $xyu > ^{^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ }$

(/7 '•n

Date

PHYSICS

Course Name

PHY 113-3

Course Number

PHILOSOPHY/GOALS:

METHOD OF ASSESSMENT (GRADING METHOD)

TEXTBOOK(S)

Introduction to Mechanics, Second Edition by Irving J. Levinson

topic <u>Number</u>	PERIOD <u>LECTURE-</u>	S LAB	DESCRIPTION	REFERENC	E
I	4	0	INTRODUCTION	Chapter	1
			- review of trigonmetry		
II	11	0	FORCES	Chapter	2
			 vector & scaler quantities characteristics & units of forces resultant of parallel forces addition of vectors components of a force subtraction of vectors moment of a force principle of moments couples 		
III	6	0	CENTRE OF GRAVITY	Chapter	3
			 determination of centroid determination of centre of gravity centre of gravity of simple & composite solids 		
IV	4	0	FRICTION	Chapter	6
			force of frictioncoefficient of frictionlaws of friction		
V	10	0	MACHINES	Handouts	}
			 mechailical advantage velocity ratio efficlency types of mach'ines: the lever the wheel & ax the pulley the 1 ncli ned p the wedge the screw compound machi gear (jrives: two 'gears in mesh gear trains pully drives: two pulleys connect by a belt pulley trains 	er el & axle ley ilined plan ge ew d machines mesh connected	

•

TOPIC NUMBER	PERIODS LECTURE-LAB	TOPIC DESCRIPTION	REFERENCE	
VI	6 0	MOTION	Chapter 9	
		 distance & displacement speed & velocity acceleration uniformly accelerated motion falling bodies rotational motion 		
VII	4 0	HEAT & GASES		
		 four temperature scales: Fahrenheit Celsius Kelvin Rankine absolute temperature absolute & gauge pressure normal temperature & pressure Boyle's law Charles' law the General Gas law 		

PHY 113-3

COURSE OBJECTIVES

Upon successful completion of the course, the student will be able to:

INTRODUCTION

Review of Trigonometry

- with reference to a given angle in a right-angled triangle specify the "hypotenuse", the "opposite side" and the "adjacent side".
- in terms of the hypotenuse, the opposite side and the adjacent side define the six trigonometric functions: sine, cosine, tangent, cotangent, secant and cosecant.
- write a verbal statement and a mathematical statement of the "Pythagorean theorem".
- write a verbal statement and a mathematical statement of the cosine law.
- write a verbal statement and a mathematical statement of the sine law.
- calculate sine and cosine values for angles lying between 90 degrees and 180 degrees.
- solve problems in basic trigonometry at a level sufficient to enable him/her to deal with the mathematics of mechanics.

FORCES

- 1) Vector and Scaler Quantities
 - define and list examples of "scaler quantities".
 - define and list examples of "vector quantities".
- 2) Characteristics and Units of Forces
 - define "force" incorporating into the definition the essential ideas of Newton's first law of motion.
 - list 9 categories of forces,
 - state the two characteristics of force magnitude and direction.
 - solve problems using the standard American engineering units of force the pound, the kip and the ton.

- 3) Resultant of Parallel Forces &
- 4) Addition of Vectors &
- 5) Components of a Force
 - define "resultant force".
 - determine the resultant of two coplanar forces by means of the "parallelogram method" using a graphical approach,
 - determine the resultant of two coplanar forces by means of the "parallelogram method" using a mathematical approach.
 - determine the resultant of two or more coplanar forces by means of the "polygon method" using a graphical approach.
 - determine the resultant of two or more coplanar forces by means of the "component method" using a mathematical approach.
- 6) Subtraction of Vectors
 - determine the difference between two forces by means of "vector subtraction".
- 7) Moment of a Force
 - state a definition of "moment of a force" or "torque".
 - write an equation for the moment of a force about a point.
 - calculate the moment produced by a force about a point.
- 8) Principle of Moments
 - write a statement of the "principle of moments",
 - solve problems involving forces acting upon systems in rotational equilibrium.
- 9) Couples
 - state a definition of a "couple".
 - solve problems involving couples.

CENTRE OF GRAVITY

- 1) Determination of Centroid
 - state a definition of Centre of Gravity
- 2) Determination of Centre of Gravity

- state a definition of "centre of gravity".
- describe an experiment by which the centre of gravity of any two dimensional figure may be determined.
- 3) Centre of Gravity of Simple and Composite Solids
 - determine the centre of gravity of particles grouped along a straight line.
 - determine the centre of gravity of particles grouped in a plane.
 - determine the centre of gravity of particles grouped in space.
 - determine the centre of gravity of simple and composite two dimensional figures.
 - determine the centre of gravity of simple and composite three dimensional solids.

FRICTION

- 1) Force of Friction
 - state a definition of "friction".
- 2) Coefficient of Friction
 - write an equation for the "coefficient of static friction".
 - write an equation for the "coefficient of kinetic friction".
- 3) Laws of Friction
 - state the three "laws of friction".
 - solve problems involving static and kinetic friction.

MACHINES

- state a definition of a "simple machine".
- 1) Mechanical Advantage
 - state a definition of "mechanical advantage".
 - write an equation for mechanical advantage.
- 2) Velocity Ratio
 - state a definition of "velocity ratio".

- write an equation for velocity ratio.
- 3) Efficiency
 - state a definition of "efficiency".
 - write two equations for efficiency.
- 4) Types of Machines
 - draw diagrams of
 - describe the operation of &
 - write equations for the mechanical advantage, the velocity ratio and the efficiency of
 - i) the "Lever".
 - the first class lever
 - the second class lever
 - the third class lever
 - ii) the "Wheel and Axle",
 - iii) the "Inclined Plane",
 - iv) the "Screw".
 - v) the "Pulley".
 - a single fixed pulley
 - a single moveable pulley
 - pulley systems
 - draw diagrams of
 - describe the operation of &
 - write the basic equations for the angular velocity of
 - 1) two gears in mesh.
 - ii) two pulleys connected by a belt.
 - iii) gear and pulley trains.
 - solve problems involving the mechanical advantage, the velocity ratio and the efficiency of both simple machines as well as composite machines composed of simple machines-

MQTION

- 1) Distance and Displacement
 - state a definition of "distance".

- state a definition of "displacement".
- explain the major difference between distance and displacement.
- 2) Speed and Velocity
 - state a definition of "speed".
 - state a definition of "velocity".
 - explain the major difference between speed and velocity.
- 3) Acceleration
 - state a definition of "acceleration".
 - state the 3 instances in which an acceleration is said to occur.
 - state a definition of "uniform acceleration".
 - state the units of acceleration.
- 4) Uniformly Accelerated Motion
 - write the 4 equations involving uniformly accelerated motion that interrelate original velocity, final velocity, acceleration, displacement and time.
 - solve a wide variety of problems involving displacements, constant velocities and uniformly accelerated motion,
- 5) Falling Bodies
 - state the value of the acceleration due to gravity "g" in F.P.S. units, M.K.S. units and C.G.S. units.
 - solve problems involving bodies falling under the influence of gravity.
- 6) Rotational Motion
 - state the equation used to calculate the "normal acceleration" of a body travelling at constant speed "v" in a curved path of radius "r'
 - solve problems involving rotational motion.

HEAT AND GASES

- 1) Four Temperature Scales
 - Fahrenheit
 - Celsius

- Kelvin
- Rankin
- 2) Absolute Temperature
 - state the fundamental concepts of the "kinetic theory of heat".
 - explain the difference between the heat possessed by a body and the temperature of the body,
 - explain what is meant by the concept of "absolute zero".
 - state the 4 temperatures scales in common use today.
 - state on each of the 4 temperature scales the temperature at which water boils at atmospheric pressure, the temperature at which water freezes and absolute zero.
 - write the equations used to convert:
 - 1 degrees Celsius to degrees Fahrenheit,
 - ii degrees Fahrenheit to degrees Celsius,
 - iii degrees Fahrenheit to degrees Rankin,
 - iv degrees Rankin to degrees Fahrenheit,
 - v degrees Celsius to degrees Kelvin-
 - vi degrees Kelvin to degrees Celsius,
 - vii degrees Rankin to degrees Kelvin,
 - viii degrees Kelvin to degrees Rankin.
 - convert temperatures in any one of the scales to corresponding temperatures in any of the other 3 scales.
- 3) Absolute and Gauge Pressure
 - write the relationship between "absolute pressure", "gauge pressure" and atmospheric pressure.
- 4) Normal Temperature and Pressure
 - explain what is meant by and give values for "normal temperature and pressure".
- 5) Boyle's Law
 - explain what is meant by an "Isothermal change".
 - write a verbal statement of "Boyle's Law".
 - write a mathematical statement of "Boyle's Law".
 - solve problems involving Boyle's Law.

- 6) Charles' Law
 - explain what is meant by an "Isobaric change".
 - write a verbal statement of "Charles' Law".
 - write a mathematical statement of "Charles' Law".
 - solve problems involving Charles' Law.
- 7) The General Gas Law
 - write a mathematical statement of the General Gas Law.
 - solve problems involving the General Gas Law.